海子铁路网

 找回密码
 注册进站

QQ登录

只需一步,快速开始

查看: 4404|回复: 12

Germany Heavy Duty E93 Freight Locomotive

[复制链接]
发表于 2008-12-1 19:09:08 | |阅读模式
Sometimes called the German Alligator, the E 93 (and E 94/BR 194) electric, heavy freight locomotive represented a significant technical achievement when it joined the Deutsche Reichsbahn (DR) in 1933, but before delving into this machine, I have to set the stage that led to this successful and groundbreaking design..
Setting the stage
In the early 1930s, the DR had operated two electric engines for heavy freight operations, the E 91 (specifically the E 91.9) and the E 95 but both of these machines were designed and built in the mid-1920s and some thought had to be given to a replacement. The DR owned 46 of the E 91.9 and only six of the giant E 95.
The E 91.9 was a freight locomotive intended for steep grades and mountainous regions and was not a particularly fast machine. The E 95 was designed primarily for more level regions. Klaus Bochmann (see Sources) writes, "By default, one can say that the E 95 was the only true predecessor to the E 93. The reason for development of the E 95 was the planned electrified route Breslau - Liegnitz - Arnsdorf, part of the long, level Oppeln - Kohlfurt - G?litz line. But, the former line was not built and, as a result, the DR had to find other uses for the E 95. These locomotives wound up on the Dittersbach - Lauban - G?litz line where they served well, perhaps even exceeded expectations." Though developed and built for non-mountainous service, the E 95 acquitted itself favorably on some rather severe grades. It had excellent acceleration for passenger service but despite its modest top speed of 70 km/h (44 mph), it covered an impressive 7,000 km (4,340 miles) per month.
The worldwide economic crisis of 1929 had severe consequences on the DR , slowing if not altogether stopping electrification of many rail lines. Still, by 1930 the DR initiated the electrification of the important Stuttgart - Ulm line for two reasons - one being the sheer necessity of this step and two as a means of combating some of the massive unemployment that prevailed. Service on the newly completed electrified line began on July 1, 1933. This line features what is probably the most famous steep grade in Germany, the Geislinger Steige. This stretch is so steep that to this day, helper service (pusher Lok) is necessary to move a heavy freight train up that grade. Once electrification was completed, the need for a pusher engine quickly became apparent and existing E 91s were called in from Munich. While a newer engine would have been desirable, economic reality dictated otherwise. Still some thought had to be given to a replacement because the side rod drive system was outmoded since nose-and-axle suspended motor drive was already well proven. Also, the
DR had done some calculations figuring and learned that maintaining a rod-driven engine of Caxle arrangement was more costly than maintaining a Cooengine. The die was cast. Plans for a replacement moved forward. But, the stage needs to be set further.
The three prototypes of the E 44 electric locomotive had also arrived for evaluation by the DR. This engine broke ground in that it featured two four-wheel bogies with nose-and-axle suspended motor drives. Tests quickly proved the soundness of the design. In fact, the test were so successful that the E 44 was ordered in quantity for medium-duty service. Further endorsement of the design concept was that the new heavy freight locomotive, the future E 93, would also use this technology.
Finally, the E 95 definitely did not serve as the basis for the E 93 because the former was a very expensive and complex double or two-unit-locomotive. It could be uncoupled into two halves for regular service and maintenance. All of the electrical and much of the mechanical equipment was duplicated. All in all, an unsatisfactory approach for the future E 93.
Design of the E 93
Construction of the new heavy freight locomotive was undertaken by AEG (Allgemeine Elektrizits Gesellschaft). The German economy, like the rest of the world, continued to reel from the disaster of 1929 and thus the DR did not feel the need for more than two of the new locomotive. In fact, the engines were not even considered to be prototypes but rather production machines. Numbered E 93 01 and E 93 02, they were, in reality, lengthened E 44s featuring two three-axle bogies connected with what might best be called a bridge structure. The result was a locomotive that was a variation on the Swiss/Austrian Crocodile theme. The middle structure, bridging the two three-axle bogies of the locomotive, contained the necessary high voltage transformer and related electrical and mechanical equipment. One disadvantage of this construction was the relatively high weight of the bridging structure and one partial solution to the problem was to have the center section house only that equipment absolutely vital to the engine operation. Other equipment, such as the batteries and air compressors were installed in the housings over the bogies.
Staying within what certainly must have been very specified, yet not mentioned by Klaus Bochmann, weight limits greatly concerned the design staff at AEG. There were some reservation as to whether or not the new engine could be built to a Coo axle arrangement while staying within the 20 ton axle loading. The entire center section was a welded structure with the sheet metal being attached with rivets. The bogies were a traditional riveted structure, rather than being welded since some concern had been expressed about the latter. This is especially curious since the E 44 engine welded bogies had proven entirely reliable. The overall length (L) of the E 93 was 17,700 mm (58 ft) and the wheelbase was 12,800 mm (42 ft).
The electrical system was also new and had been simultaneously installed in the E 04 and E 44 electric locomotives. One of the features of the newly developed system enabled much finer speed control of the engine, much like a vernier dial.
Over a period of six years, 18 of the E 93 were delivered by AEG to the Reichsbahn. All in all, the new engine performed extremely well. Wheel wear was not nearly as severe as initially predicted. The first four of the series (E 93 01 to 04) was limited to 65 km/h and rest, starting with E 93 05, were permitted to run at up to 70 km/h (44 mph). The reason for the 65 km/h (40 mph) limit of the first four engines was that they were specifically assigned as helpers on the Geislinger Steige.
Test and Evaluation
While designing the E 93, the following requirements had to be considered.
  • 600 ton trains on a 10% grade at 50 km/h (31 mph).
  • 720 ton trains on a 22.5% grade at 40 km/h (25 mph).
Calculations showed that with the above loads a tractive effort of 36,000 kg (79,200 lb) would be required to set the train into motion. To that end, six motors (type EKB 620) delivering 385 kW (516 hp) for a total of 2,310 kW (3,100 hp) at 70% of top speed, or 45.5 km/h (28 mph) for the first four E 93s and with the transformer supplying 1,680 kVA. These requirements were specifically for the Stuttgart - Ulm line. During initial service of the E 93 that meant trains of 1,600 tons to G?pingen and then 1,200 tons to Altenstadt near Geislingen.
Mechanical Systems
Modelers of German model railroads often wonder why a symmetrical locomotive, such as E 93, are marked with the numbers 1 and 2 or the letters V and H at the driver position. Well, there is indeed a front (V or 1 means vorne) and rear (H or 2 means hinten) and this is dictated by the suspension (springing) of the engine. Further, there is a left and right side. Left and right are determined by the direction of travel. In right hand traffic, such as in Germany, the passage way in the center section is on then on the left side.
The front and rear sections are coupled to the center section so that push and pull forces are distributed uniformly. The hinging or coupling to the front and rear sections is by means of large pivot pins or trunnions. The entire structure makes for a simple yet rugged and reliable framework.
The two three-axle power bogies of the locomotive are very similar in their construction. The frames of these units consist of 28 mm (1.10 in.) steel plate that is riveted together. There are four crossmembers to further strengthen this large, rectangular box structure. The first of these crossmembers also secures the buffers, couplers other parts. Starting at the front, the axles are numbered 1, 2 and 3 and the second set follows with 4, 5 and 6 with number 6 being the outermost.
The second crossmember is located just before the second axle. This crossmember is used to anchor the quill of the nose-and-axle-suspended motor of the first axle. Along the top flange of the second crossmember the pivot pin is also located.
To avoid excessive stresses on the center section of the engine, it was coupled to both bogies using ouplings similar to those used in coupling a steam locomotive to its tender.
The coupling absorbs pulling stresses and a pair of sprung buffers does the same when the engine is used in pusher service. The buffers also act to straighten the engine after negotiating a turn and thus also reduce wear on the wheel flanges.
From the outset, the six axles were installed with, for all practical purposes, zero sideplay; however, this led to some wheel flange wear on the center axles of each bogie. The middle axles of each bogie used wheels with 10 mm (0.40 in.) thinner flanges and to further alleviate this problem, the DB installed flange lubrication systems in the 1950s. Conventional leaf spring suspension was used.
The locomotive center section, housing the main transformer and the two engineer stations, rests on the bogies on three-point mounts. The main load was transferred to the four large dashpots on each corner of the center section. Each bogie features two of the dashpots, one on the left and one on the right.
The center section is also a welded frame covered with riveted in place sheet metal. Large sections of the sheet metal can be removed quickly to ease servicing and maintenance. Once inside, the visitor will find a passage way on the right. The main transformer is in the center. Cooling air enters through four
large louvers on each side and is directed to the transformer. The engine driver positions are much the same as those found on the concurrent E 44. Compressed air needed for braking is furnished by an electrically-driven Knorr pump that furnishes air to two master brake cylinders. Two brake shoes per wheel are used. For additional traction, more specifically, when dealing with the Geislinger Steige, sandboxes are installed that supply sand to every wheel. However, starting in 1957, as the Indusi system was being implemented, some of the sandboxes had to be removed to make room for this now widely used safety system. With reference to the Geislinger Steige, it should be noted that E 93s assigned to pusher service featured special couplers that could be released without having to stop.
Electrical Systems
Starting on the top of the E93, there are two type SBS10 pneumatically-operated pantographs which are connected by large bus bars to the main circuit breaker, an oil-filled unit which can handle up to 100 MVA. In addition, each pantograph has a separate switch so that they can be individually disconnected in case of a problem. Power (15,000 volts at 16 2/3 Hz) is fed to the oil-cooled main transformer delivering 1,680 kVA continuously. The secondary has 18 taps corresponding to 15 taps for the 15 speed ranges of the locomotive and three for auxiliary functions, such as train heating, an indication that freight was not the E 93 only calling in life. The pneumatically-operated tap changer provides operating voltage ranging from 58 to 551 volts. In addition, there is a cam-operated tap changer for fine adjustment of the engine speed. The E 93 is powered by six Type EKB 620 electric motors of 650kW (870 hp) each. These are 10-pole series-wound nose-and-axle-suspended motors connected in parallel. Forced air cooling is used. Their power is transmitted via a reduction gearbox. With minor changes, the motors are the same as those found in the E 95 locomotive and having shown excellent reliability and ease of maintainability. The louvers on the side of the engine serve to conduct cooling air to the electrical components. A bank of 12 braking resistors is mounted on top of the engine roof.
Service Before and After the War
Built primarily for heavy freight service on the Kornwestheim (Stuttgart) - Geislingen - Ulm, the first E 93, specifically E 93 01, was put into service in the summer of 1933 at the Kornwestheim service facility with E 93 02 following that November. Two more engines followed in 1935 and nine more in 1937. When E 93 07 and E 93 08 were completed, they were assigned to Bw Ulm, where the latter remained until 1951. One of the E 93 major duties was pusher service up the Geislinger Steige.
193016cs.jpg
193007_2.jpg
发表于 2008-12-1 20:46:17 |
英文的看不懂啊!能不能翻译一下?
发表于 2008-12-1 22:39:19 |
呵呵 冒昧的问楼上一句
真看不懂 还是懒得看英语?
发表于 2008-12-2 06:48:44 |
本人英文水平已经接近于零了……无数的单词认不得~而且,看到这么长篇幅的介绍,也都没有耐心看下去了……
我只知道,我们Kranichstein的铁路博物馆里,有不少老车,似乎就有这个车!
上次去Kranichstein Bf 坐火车,就看到有人用小调机推着一些老车厢跑来跑去,似乎是在学习驾驶,或者是在驾照考试……
发表于 2008-12-2 06:58:54 |
其实我也没看下去的……
发表于 2008-12-2 07:03:51 |
在我们这里偶尔能看到这类车。

不是E93,而是E44,楼主原文里也提到了。
470I3668.jpg
发表于 2008-12-2 07:09:11 |
原帖由 ICE-9556 于 2008-12-2 06:58 发表
其实我也没看下去的……

我也没看下去,哈哈。
发表于 2008-12-2 07:37:51 |
原帖由 ebay 于 2008-12-2 07:09 发表

我也没看下去,哈哈。

:lol
哈哈哈 我也只看了个开头和大概
语法 句型突然一变 有点不适应了
大家都深受德语毒害啊
发表于 2008-12-2 07:41:31 |
我也只看了一两行~

现在发现WIKI很强大,什么机车型号都能查到~还有各国语言版本~
发表于 2008-12-21 10:18:56 |
原帖由 leenan 于 2008-12-1 19:09 发表
Sometimes called the German Alligator, the E 93 (and E 94/BR 194) electric, heavy freight locomotive represented a significant technical achievement when it joined the Deutsche Reichsbahn (DR) in ...

德意志重责任E93货物机车
有时被称作德国短吻鳄,E 93(和E 94/BR 194)电气车辆的,当它在1933年加入德国Reichsbahn((DR),但是在深入研究这台机器之前,我必须设定导致这个的舞台的时候,重货物机车代表一个重要技术成就成功和破天荒的design.. 设定演艺界 在1930年代年初,DR已经运作为重货物运算二电引擎,E 91((特别E 91.9)和E 95但是机器这些两者被设计的和在中间-1920年代建立和必须被一些考虑一替换.DR拥有E 91.9的46和仅巨人E 95的六.E 91.9was一货物机车打算给陡坡和多山外省区和不是一台特别快机器.E 95主要为更差不多外省区而设计的.Klaus Bochmann((主教的职位来源) 写作,按缺省,一能说E 95向E 93是唯一的真实前任.E 95的发展的理由是计划的使路线布雷斯劳 --Liegnitz--Arnsdorf电气化,部分长时间,水平Oppeln--Kohlfurt--G??litz线.但是并非建造的线越更以前和因此,DR有找出为E 95其它使用.这些机车在Dittersbach--Lauban-上结束-G??litz线那些在哪里为好,也许甚至超过期望服务.虽然发展为非多山服务和积累,E 95有利宣布它自己免于一些相当严重级的指控 .它有为乘客服务但是尽管它的70千米/的谦逊最高速度非常好加快h每小时(44英里),它走完一每月给人留下深刻印象7,000千米((4,340英里).全球的经济上的1929危机有在DR上若非完全停止起电,放慢的很多栏杆线的严重结果 .仍然,到1930年DR为两理由--一,是这步的完全是必需品和和一些斗争的两某样的人一手段开始重要斯图加特--乌尔姆线的起电的很大失业那优先.有关使新近完成线电气化Service开始1933年7月1日.这线特征是什么大概是在德意志最出名陡坡,Geislinger Steige.这延伸是如此急剧迄今,帮助者服务((推的人Lok)是对提议一重货车向上的移动那级必要的以至.一旦起电was完成,需要一推的人引擎迅速变得明显和现存的E 91s从慕尼黑被收回的.在一更新引擎将已经是符合愿望的同时,经济上的现实除此之外口授.仍然因为自鼻子-和-轴中断电动机驱动装置was已经好证明是以来,方面杆推动力系统是过时的,必须被一些考虑一替换.也,DR已经一些计算计算和有学问那维修一比维修一Co辰o・engine更代价巨大的C辰・axle安排was的杆-驱动的引擎.模具被投.一替换的计划向前移动.但是演艺界应该是更远设定.E 44电力机车机车的三原型已经为评价经过DR也到来.这引擎破产地在朝派那它用鼻子-特征是二装有四只车轮的转向架和-轴中断电动机驱动装置.试验迅速证明健康的是设计.事实上,试验是如此成功E 44was为中等-责任服务订购在朝派数量以至.更的远的支持设计观念是新重货物机车,将来E 93将也使用这技术.最后,因为前者是一非常昂贵和复杂两倍或者两-单位-机车,E 95肯定没有为E 93服务当基础为.它能被变为两一半为正常服务和维持脱钩.所有的电气和非常机械装备的was被复制.总的说来,一为将来E 93令人不满意接近.新重货物机车的E 93建造的设计AEG((Allgemeine Elektrizit?xs法理社会)所承担的.像其余的世界德国经济继续抽从 1929和因此DR的灾难没有感受到新机车的需要超过二.事实上,引擎未被甚至向是原型但是有点被认为是生产机器.给他们编号E 93 01和E 93 02是实际上,特征是二十三轴转向架加长E 44s与什么可以最好被被称作一桥结构的相连.结果是一运动的那was一瑞士人//奥地利人鳄鱼主题的变奏曲.跨过二十三轴转向架机车的中间结构含有必然高压变压器和相关电气和机械装备.这建造的不利之处是跨过结构和一部分的有问题的was,让中心工段工具仓库仅有那装备完全对engine痴运作至关重要的解决方案的相对说来高重量的.例如电池和空气压缩机另一装备被在转向架的上方把安装在住房.在什么以内当然留下一定是非常指定,还未被Klaus Bochmann提到,重量极限在AEG非常与设计工作人员有关.有一些至于是否同时在装载20吨轴以内留下,新引擎能是对一Co辰o轴安排建造的保留.整个中心部分was a用被用铆钉系金属板焊接结构.转向架是一而不是被由于被关于后者表达一些关心,焊接传统吸引结构.由于E 44engine痴焊接转向架证明是完全可靠,这个是特别好奇.总长度((L・)12,800毫米((42英尺)有E 93was 17,700毫米((58英尺)和轴距.电气系统在E 04和E 44辆电力机车机车中也是新和已经被同时安装.新近发展系统的特征之一有助于好的得多的速度对非常像一张微调刻度盘引擎的控制.在一六年的时期的时间中,E 93的18被AEG传送给Reichsbahn.总的说来,新引擎极其好履行.轮子穿用远远不是像开始时一样严重作预言.第一串联((E 93 01比04)的四被限制为65千米/h和休息被允许向多达70千米//h((每小时)44英里冲过来以E 93 05开始.65千米/的理由第一四引擎的h每小时(40英里)极限是那些被特别给分配在Geislinger Steige上阿斯帮助者.试验和评价,同时设计E 93,有认为下列的要求要被.600吨在一10%级阿特50千米/上训练h((每小时)31英里.720吨在一22.5%级阿特40千米/上训练h((每小时)25英里.计算展示上述负担地一36,000千克((79,200磅)的牵引的努力将被需要来设定火车变为运动.为此六马达(打字EKB 620)履行385 kW(516 hp)为a总计的2,310 kW(3,100 hp)阿特70%的向高处升疾驰金色45.5千米h每小时(28英里)为前四E 93s和用变压器暂代他人职务1,680 kVA.这些要求特别是对于斯图加特--乌尔姆线.在93其意味着1,600吨的火车的E的向G??pingen然后开头发球期间向Altenstadt 1,200吨接近Geislingen.德国模型铁路的机械Systems制造模型者常常惊讶为什么一辆例如E 93对称机车在driver痴位置有1和2号或者文学V和H的标记.好,的确有一外表((V金色1意味着vorne)和后部((H金色2意味着hinten)和这个被(跳起)引擎的悬浮口授.更远,还剩下一和正面.左边和权利被旅行的方向决心.在例如在德意志右手交通中,有关左边那时在中心部分中通路方式是.前部和后面部分被连接到中心部分,因此推和拉武装力量被始终如一地分配.用合叶和前部和后面部分连上或者成对是利用大枢大头针或者炮耳.整个结构有助于造成一简单还粗旷和可靠框架.机车的二十三轴力量转向架是非常相似在朝派他们的建造.这些单位的结构由28毫米((1.10在朝派)构成.钢板那存在吸引一起.有四crossmembers进一步加强这大,长方形的盒结构.crossmembers也使这些的第一牢固缓冲存储器,连接者其他的分开.在前部阵线方面出发,轴被给编号1,2和3随着6号存在和第二装置随着用4,5和6到来最外面的.第二crossmember存在仅仅在第二轴的前面定居.这crossmember存在过去经常停泊第一轴的鼻子-和-轴-中断马达的翮.沿着第二crossmember的最高凸缘枢大头针被也找到.避开过分的强调中心段引擎,它was连接向两个转向架使用和在连接一台蒸汽机车方面向它的投标用过那些相似ouplings.联结吸引拉动压力当引擎存在使用在朝派推的人服务的时候,和一对跳过缓冲存储器做同样的.缓冲存储器也行动把谈判一倾向引擎下午弄直和因此也减少在轮子凸缘上穿用.从一开头,六根轴所有的事实上被用安装,对sideplay作归零校正;但是,这个导致一些在每一转向架的中心轴上轮子凸缘穿用.每一转向架使用的中间轴的有的10毫米((0.40在朝派)旋转.更薄凸缘和向进一步减轻这问题,DB把凸缘润滑作用系统安装在1950年代.通常钢板弹簧悬浮被使用.locomotive痴中心工段工具仓库主要变压器和两engineer痴车站,在有关三-点座骑转向架上休息.主要负担被把转移到在中心部分的每一角处四台大缓冲器.每一转向架特征是缓冲器,在左边一和右边一的二.中心部分是也一被吸引在朝派地方金属板覆盖的焊接结构.大的段金属板罐是迅速去除向安逸保养和维修.访客一旦在里面,将右边找出一种通路方式,就.主要变压器
在朝派是中心.冷却的空气通过四块大百叶窗板开始每一方面和目标是变压器.当那些在同时发生的E上发现44时,引擎driver痴大致相同安放公亩.为刹车需要压缩空气被一泵其为两根主人闸柱提供空气的用电力-驱动的Knorr陈设.每轮子两制动瓦被使用.为附加牵引,更特别,当处理Geislinger Steige的时候,沙池被安装那个提供向每一个轮子沙.但是,在1957年开始,当Indusi系统正被执行时,某些沙池必须是远离的使这现在可用的空间成为广泛使用安全系统.关于Geislinger Steige,它将去被在外面指出E 93s给推的人服务分配由能被发布的特殊连接者主演必须停止.电气Systems,在顶上E93,那里公亩二把的归类的充气地-开始SBS10运作缩放仪,公亩按照大的母线向把连接到主要断路器一个能处理多达100 MVA的石油-填补单位的.此外,每一缩放仪有一分开开关,因此假如,一问题他们能作为个人是断断续续.Power((在16 2/3 Hz)15,000伏特被用喂石油-使连续不断把kVA送到1,680主要变压器冷下来.次要有18个熄灯号为为例如火车暖气辅助性功能机车和三,一货物在中不是E 93痴仅有职业的迹象的15个速度范围与15个熄灯号相符生活.充气地-运作水龙头改变的人抚养造成电压射程从58到551伏特.此外,为好的调整engine痴速度有一个凸轮-运作水龙头改变的人.E 93每个由650kW((870 hp)的六台类型EKB 620台电马达驱动.这些是在相似处中连接10-极串联-伤口鼻子-和-轴-中断马达.不得已空气冷却被使用.他们的力量被经由一个减少齿轮箱传送.随着较小改变,当那些在E中发现95机车和有时,马达也一样
可维持性的展示非常好可靠性和安逸.引擎发球向的额外百叶窗板带领冷却的空气到电气成分.一排12个刹车电阻器被向前顶部的engine痴屋顶爬上.主要建立在战前和在战争以后对于在Kornwestheim(斯图加特)-Geislingen--乌尔姆上重货物服务,第一E 93,特别E 93 01服务被用服务在朝派表达度过夏天的1933阿特Kornwestheim服务设施用E 93 02跟随那十一月.更额外的二引擎进入随着在1937年1935和九更多到来.当E 93 07和E 93 08被完成的时候,他们被给那里后者直到1951停留的Bw乌尔姆分配.一个沿着Geislinger SteigeE 93痴主要职责was推的人服务

以上结果是我用金桥翻译翻译的
发表于 2008-12-26 20:36:50 |
There are so many 痴 in this writing, Why?:handshake:loveliness:

[ 本帖最后由 JGZ0001 于 2008-12-26 20:40 编辑 ]
发表于 2009-1-2 22:55:21 |

translate above mentioned into Chinese,ahaha!!!

德国重载货运机车E93型简介
     曾经有段时间被人们称为德国的短吻鳄,在1933年E93(还有E94/BR194型车)电动重载型货运机车被投入到德国
国家铁道的运用当中去的时候,它就代表了当时有重大意义的技术成就(或科技进步)。但是我们在深入研究(
钻研)这部机器的时候,我觉的必须划分出几个引领这项成功且具有开创性设计的重大科技成就的发展阶段来!
确定几个发展阶段
     在30年代早些时候,德国国家铁路已经在运用着两种类型的重载型货运电动机车,E91(确切的说是E91.9)和
E95,但是这两种型号的机车设计和制造于20年代中期,某些人认为,它们注定是要被别的车型替换掉的。当时
德国国家铁路在运营46台E91.9型和仅仅六台大力士E95.E91.9是一种被用于有陡峭坡度和山区线路的车型,并非
是一款快速机车,E95最初设计是用来更多运行于平坦地区的车型,克劳斯.波科曼(看下相关出处)这样写到,不论
是谁,他都敢说E95仅仅是E93的真正原型和参照,当然啦,发展E95的原因是布雷斯劳-利格尼兹-阿恩斯多夫,又长
又平坦的奥波莱-科尔福特-高尔利茨线的一部分已经在计划实行电气化了,但是前面的线路还没有被建成呢,于是
德国国家铁路就把它们转向其它用途(线路和场所),这些车头在第特巴赫-劳班-高尔利兹非常活跃,大显身手,甚
至比人们想象中的要好的多.尽管它们是为非山地地区(即平原地区)研发的,E95还是在某些有一定坡度的路段尽
职尽责的完成运输任务,对于旅客列车来说,它们具有较高的加速度,尽管它们的合适最高速度只能达到70KM/H
(44MPH),它们还是平均每个月奔驰在7000KM(4340MILES)的线路上,这很让人难忘的.
    1929年世界性的经济危机给德国国家铁路带来严峻后果,如果不停止所有线路的电气化改造,那么经营只能会是不
景气的,但是1930年的时候,德国国家铁路还是启动了一条重要线路斯图加特-乌尔姆的电气化改造项目,主要有两
个原因,一是这个路段的必然需要,二是用来解决当时因经济不景气而造成的失业率过高的问题(即满足就业需
要).1933年七月一日新的电气化线路全部投入运营,这条线路的一大特色就是它可能拥有德国最著名的陡坡路段,
位于盖斯林格的陡崖路段.这一路段如此陡峭,以至于到了今天,仍旧需要补机才能把重载货物列车送上陡崖路段.
一旦电气化完成,所需的补机类型显而易见就马上变成了现存的从慕尼黑调集来的E91型车了.当需要更新的机车
类型时,实际的经济状况却又不允许,当时有一种看法仍旧认为是该更换的时候了(更新换代),因为侧连杆驱动装
置系统已经过时了,因为鼻-轴悬式电动机驱动装置已经被证明是具有更大的优越性了,而且德国国家铁路也通过
进行维护保养方面的成本计算与比较也认识到了C轴式排列的侧连杆电动机驱动装置与C0鼻-轴悬式电动机驱动装
置系统相比,在维护保养方面的成本更高,金属模子是铸造而成的,替代计划又往前迈出了一步,但是这一阶段仍需
要更进一步的细分.
   E44电气机车的三台原型车也已经接到手了,用于德国国家铁路的评估和评价(试验).这批机器打破以前的传统设计,
它门都是以采用两台四轮转向架和鼻-轴悬式电机驱动装置而颇具特色的机车,而试验也很快证明了当初设计的准
确无误,实际上试验也非常成功,E44被大量订购而被用于中等强度的运输服务.这项设计理念得到了更进一步的支
持,从而运用于新的重载货运机车,例如将来的E93型,也采用这样的新技术和新工艺.
最后,确切的说E95并没有成为E93机车的设计蓝本和依据,因为前者有着较为昂贵和复杂的两节连挂或重联机车系
统,它要被拆解成各自的两台(即一分为二)机车才能用于通常的运输服务和日常保养当中去,所有的电气部件和绝
大部分机械部件设备都比较复杂,总的来说,不满意的倾向于未来的E93机车身上.
E93的设计
     新的重载型货运机车的设计与建造都由AEG(奥格梅讷电气会社,即德国通用电气)公司来承担,德国的经济环境,就
象世界其它地区一样,继续深陷于1929年的世界经济危机,这样一来,德国国家铁道感到不再需要两种以上的新机
车类型了(即满足于现有的类型就可以了).实际上,当时并没有考虑到作为原型车,而是量产车型了.被编了号的
E93 01和E93 02,这两台车实际上是加长的E44型车,它们有两台三轴转向架,并且用一种被称为最佳的桥式结构连
接起来.结果就是该机车同瑞士和奥地利的鳄鱼机车项目计划相比有变化,中间的结构(或构造体),桥式的连接起
了机车两台三轴转向架,包括必须的高压变(低压)压器和相关的电气与机械部件设备,这种结构的不利一面在于桥
式结构有相对高的重量(较重),一个部分解决问题的办法在于只拥有一个中心工控部件即可,这个设备能够对机器
的正常运行绝对会产生重大影响(有着重大作用,必不可却少).其它的设备,例如蓄电池组和空气压缩机都安装于
转向架外壳范围内.
    在这里有一点必须要被提起,克劳斯.波克曼还没有提到的是,关于重量的严格限制极大的牵动着AEG公司设计人员
的心!对于新机车是否能被设计建造成一C0轴式,轴重被限制在20吨以内(不超过).整个中心部件(核心部件)是用
铆钉将各金属片连接起来的焊接结构!而转向架则是传统的铆钉连接结构(铆接),而非焊接结构因为后来又有了更
多其它方面的考虑.这个非常让人感到好奇,因为E44机车采用的是焊接转向架,并被证明是完全(非常)可靠的,E93
的总长度是17700MM(58英尺),前后轴距是12800MM(42英尺),电气系统也是新的,几乎被同时安装到E04和E44电气
机车上面,新的运用系统的一个显著特点是能对机车进行良好的速度和操作控制,就像是游标刻度盘那样更好的对
机车速度进行控制!
    超过为期六年的(一个)试验运用阶段以后,18台E93型机车由AEG公司正式交付给德国国有铁道运营.总而言之,新的机
车表现非常良好,性能很突出,轮缘损耗远不及当初预测时的那样严重,最初首批四台机车(E93 01到E93 04)速度
被限制在65KM/H和其它速度值等,从E93 05号开始,最高速度被提高到70KM/H(44MPH)。最初那首批四台机车
限速65KM/H(40MPH)的原因主要是它们被专门(指定)用于盖斯林格路段的补机运行服务当中!
试验和评价(评估)
 当初设计E93机车的时候,以下需求因素是必须要被考虑到的:
600吨的列车要在10%的路段上启动并被加速到50KM/H(31MPH);
720吨的列车要在22.5%的路段上启动并被加速到40KM/H(25MPH)。
 相关计算数据表明在以上的重量条件下,36000KG(或79200磅)的启动牵引力是必须的,它能够足以将列车转入
启动加速状态,最终,最初首批四台机车的六台电动机(马达,型号EKB 620)每台能够输出385KW(516HP)总
共2310KW(3100HP)的功率,达到70%的最高速度即45.5KM/H(28MPH),并且变压器的输出功率容量为1680KVA。
这些参数条件指定(专门)用于斯图加特-乌尔姆一线,在E93的最初服务期间,就意味着朝向盖平根的列车重量
为1600吨,而朝向盖斯林根附近爱腾斯塔特的列车重量为1200吨。
机械系统装置
 德国模型铁路的建造者们经常想知道为什么一部机车要做成左右形状对称的,比如E93,于是在驾始室朝向前面
和后面的位置(即朝前和朝后驾驶的位置)用数字1和2或字母V和H做标记用于某些研究。噢,原来是这样,那的
确是朝前的(V或者1意味着朝前面)和朝后的(H或者2意味着朝后面),并且这一切都听从于车头的弹簧悬挂装
置的分布。另外,那是分左侧边和右侧边的。究竟是左还是右由旅行的方向来决定,在右手通行的国家,例如德
国,中心部分的通道就是设在左侧的!
 朝前部分和朝后部分连接到中间部分以后,推力和拉力就均匀分布开了。无论是靠铰链连接还是轴连接前面和后
面的部分,都是凭借于大的枢轴销或空枢部件。
 整体结构做成一个简单而又结实的可靠的构架。机车的两台三轴动力转向架非常类似于图纸上的设计,这些单元
的框架包括铆接在一起的28MM厚(1.10 in.)的钢板,有四个横构件用于更进一步加强这个较大的,矩形的,盒式的
(箱式的)结构的强度!这些横构件的第一个用于保证缓冲器,车钩其它部件的安全可靠.从前面开始,车轴就被冠以
编号1,2,3,第二组接下来是4,5,6,号码6被编在最外面.
 第二个横构件(横梁)恰恰位于第二根车轴的前面,这个横构件用于固定住第一根轴的鼻-轴悬式电机的套管轴部分
,沿着第二根横构件的上凸缘的枢轴销同样被固定住了.
 为了防止(避免)机车中心部分过度的应力集中,用类似于那些连接蒸汽机车和煤水车部分的联轴器将引擎与所有
转向架都连接了起来.
 车钩用于吸收车厢间的拉应力,而一对弹性缓冲器在机车做推送服务时用于同样的目的.缓冲器还能起到在通过弯
道后将机车拉直的作用,这样还能减少轮缘的磨耗.
 从一开始,六根车轴,实际上都被做成0侧面(轴向)间隙,然而,这样将会导致每台转向架中间部分车轴的一些轮缘
损耗问题出现.每台转向架的中部车轴使用10MM(0.40 in.)厚的薄凸缘的车轮,为了进一步减缓此类(轮缘磨耗)问
题的出现,DB(德国联邦铁道)在五十年代开始启动安装轮缘润滑系统装置.常规的板弹簧悬挂装置被采用.
 机车的中心部分,提供为安装主变压器和两个驾驶室的空间,其它部分以三点挂架的形式安装在转向架上.整个车
体的主要荷载由安装在中心部分每个拐角处的筒形缓冲器(即缓冲筒)来承担.每台转向架都带有两组缓冲筒,一组
在左边,另一组在右边.
 车体的中心部分也是一个被铆接结构所覆盖的焊接结构,在适当位置用金属片连接起来的铆接结构.金属片的最大
部分能被迅速的移动,这样可以轻松维修和保养.只要一进入里面(内侧),参观者就会发现右侧有一条通道.主变压
器就在中心的位置上,冷却风通过车体每一侧四扇大的百页窗进入并且可以直接送到变压器内,用于冷却变压器系
统.机车驾驶员的位置同当时并存(那些能找到)的E44型机车很相似,刹车用的压缩空气由一台电动机驱动的克诺
尔型空气压缩机(气泵)提供,这台空气压缩机将压缩空气送入到两组主要的制动缸中去.每个车轮配备两组制动靴
,为了增加额外的牵引力,更具体的说,当运行到盖斯林格附近路段时,就要安装沙箱,给每一个车轮提供撒沙条件,
以增大粘着牵引力.然而从1957年开始,随着INDUSY(一种感应式自动停车装置)的投入运用,为了给这种目前广泛
使用的安全保障系统装置提供安装空间,一些沙箱便被拆除了.关于考虑到盖斯林格路段的情况,E93系列机车应该
是挺有名气的,因为E93系列机车被指定作为推送服务的机车类型,以其有无须停车即可与前部车厢解挂的特殊车
钩而成为一大特色.
电气系统装置
 从E93型机车的顶部开始,你会发现那儿有两台SBS10型的由压缩空气操作的受电弓架子,由粗大的汇流母线排(杆)
连接到主电路断路器,一部充油冷却的装置,能够被提高到100MVA的操作输出容量.此外每部受电弓还有隔离开关
装置,以便在发生问题(意外)时分别及时的切断各自的电路回路保证安全.从受电弓过来的功率(15000V,16
2/3HZ)被输送至油冷却的主变压器,可以持续不断的输出1680KVA能量.变压器次边绕组有18个电抽头,其中15个抽
头与机车的15级调速模式相对应,其余三个用于辅助功能,例如向客车供暖等,这就指出了E93其实在我们一生当中
,不应该只称其为货运机车的,而它也是可以做为客运机车用的.由压缩空气操作的抽头转换开关提供的电压变换
范围即从58到551伏特,另外,还有一个凸轮操作的抽头转换开关用于精确调整机车的运行速度(变换电压即可调速
),E93型机车由六台型号为EKB620的电动机(马达)提供动力来源,每台电动机的功率为650KW(870hp),有十磁极串
励绕组鼻-轴悬式电动机彼此并列的连接,使用的是强迫通风冷却系统,它们的功率由经过一个减速齿轮箱传送.通
过较小的改变,几台电动机已经同那些能找到的E95型机车的相差无几了(即很相似,相同),并且已经显现出出色的
可靠性和易保养维护性了.引擎一侧的那些百页窗用于引导冷却空气到需要通风冷却的电气部件那里去.以12个制
动电阻器为一层的电阻制动装置被安装于引擎盖的顶部位置(便于通风降温和散热).
二战前和战后的使用情况
 第一台E93型机车,确切的说是E93 01最初是被用来作为科恩维斯海姆(斯图加特)-盖斯林根-乌尔姆的货运列车服
务而建造的,正式交付使用是在1933年的夏季,位于斯图加特附近科恩维斯海姆的整备设备场,E93 02型机车也紧
随其后于当年的十一月在同样地点交付使用.两台以至更多的机车在其后的1935年,九台以至更多的机车在1937年
也相继交付使用.当E93 07和E93 08出厂以后,它们被指定用于BW 乌尔姆地区的运输服务,后者一直保留到1951年
.E93型机车的一大任务(同时也是一大特点)就是被用于盖斯林格台阶地区路段的推送列车服务!
发表于 2009-1-2 23:03:53 |

oh! my god

It took me half a day to translate this article from English into Chinese,ahaha! even pioneering work in my life!

手机版|小黑屋|Archiver|海子铁路网 ( 京ICP证120035号 京公网安备11010702001036 )

GMT+8, 2024-5-19 20:42

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表