" 普天 " 号摆式动车组动车的研制开发

王永良:大连机车车辆厂设计处,主管设计师,大连,116021

摘 要:"普天"号摆式动车组动车装用12V240ZJD-1型柴油机,机车标称功率为 3 250 kW,采用微机网络控制以及国际领先的径向全悬挂转向架,最高速度可达 160 km/h。文章介绍了"普天"号摆式动车组动车的性能、总体布局以及结构特点。

关键词: 摆式动车组;动力车;设计;性能

|有倾摆功能的列车通过曲线时 **人** 由倾摆检测系统感知列车通过 的速度以及剩余离心力加速度等参 数,通过倾摆执行机构使车体向圆心 方向预先倾斜一定角度以补偿外轨超 高,在满足旅客舒适性要求条件下提 高曲线运行速度。普通列车通过曲线 的速度提高后,未平衡离心加速度也 增加,最大可超过2 m/s²,约为正常 曲线通过的3倍左右,这必然威胁到 行车安全。而摆式列车则可通过径向 转向架技术平衡高速通过曲线时的横 向力,提高其运行平稳性,同时能有 效降低轮轨间的磨耗。

" 普天 "号摆式动车组动力车

" 普天 "号摆式动车组为2动6拖, 大连机车车辆厂研制的动力车为交 -直流电传动内燃机车。 动力车处于列 车的首尾部,以推挽方式牵引整列车 运行。动力车头部为流线形,可有效 地减小高速运行时的空气阻力。动力 车由微机网络控制,首尾动力车采用 网络通信方式。

由于动力车用于既有线提速,故 要求整车进行减重,轴重由传统设计 的20.5 t 降到18.5 t ,以提高动力车 的动力学性能及减小轮轨力。

动力车总体布局见图 1。以主车 架为分界线可将动力车分为上下两部 分,上部为车体和各类车内设备;下 部为2个完全相同的转向架组成的走 行部及挂干动力车车体中部的燃油

动力车上部由五道隔墙分为6个 部分,从前到后依次为:司机室、电 气室、传动室、动力室、冷却室和辅 助室。

司机室内设有操纵台、司机座 椅、电暖器、空调等设备。操纵台上 布置有操纵装置和显示装置。

电气室设有电器柜,电器柜采用 正压通风。采用2个功率为400 W的 风机向电气室吹入经过滤的空气,使 电气室处于正压环境,避免因吸入油 气及灰尘而造成电器元件故障。

传动室设有主整流柜、前变速 箱、启动发电机、励磁机、行车安全 设备柜、万向轴和通风机等设备。

动力室内设有柴油发电机组、机 油热交换器、机油滤清器、膨胀水箱、 燃油泵、电预热器、燃油粗滤器和起 动机油泵等。车体左右两侧墙上设有 空气滤清器、测量仪表和车体通风机。

冷却室上部为散热器呈马鞍型布 置的冷却装置,其上部安装30组铜散 热器和一个直径为 1.8 m 的冷却风扇 及液压泵。下部为变速箱、风机、风 泵电机组等设备。

辅助室安装有电阻制动柜、制动 系统阀类。

动力车主要技术参数见表1。

2 动力车主要部件及系统配置

2.1 12V240ZJD-1型柴油机

动力车的动力装置为 12 V 2 4 0 Z J D - 1 型柴油机,它是 16V240ZJ型柴油机的系列产品。 该 柴油机广泛采用了大连机车车辆厂与 英国里卡多公司技术合作的成果,使 其性能指标居国内机车用柴油机领先 水平。增压器采用 VTC214-13 增压

(C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

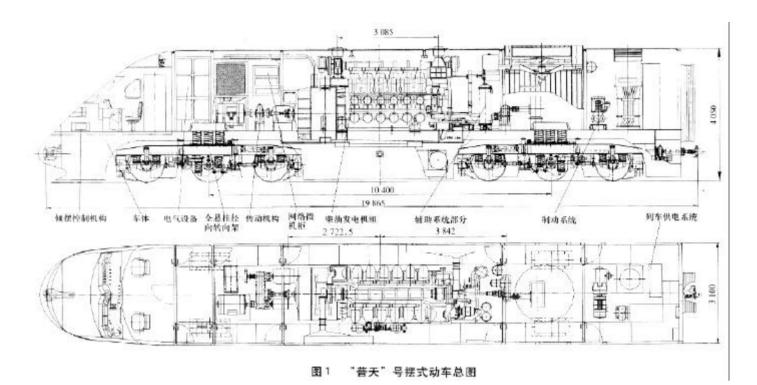


表1 动力车主要技术参数

项目	参数
用途	干线客运
轨距 / m m	1 435
限界	GB146.1-83 《标准轨 距铁路机车车辆限界》 (车限-1A,车限-1B)
环境空气温度/	-20 ~ 45
标称功率 / k W	
双节 不向列车供电	3 250
双节,向列车供电350 kW	2 910
轴式	A 1 A - A 1 A
轮径 / m m	1 050
轴重/t	18.5 ± 3%
动力车计算重量/t	111 ± 3%
燃料箱容积/L	5 000
机油储备量/kg	900
冷却水储备量/kg	950
砂储备量/kg	200
通过最小曲线半径/m	125
车钩中心线距轨面高度/mm	880 ± 10
车钩衔接线中心线间距离/mm	19 865
牵引齿轮传动比	76 29
动力车速度(半磨耗轮径1013 mm)	
最大运用速度 / km · h ⁻¹	160
持续速度 / km·h ⁻¹	60
动力车轮周牵引力(双节)	
起动牵引力/kN	220.83
持续牵引力/kN	169.5

器,高压喷油 泵、喷油器、高 压油管均为进 口部件,以进 一步提高柴油 机的可靠性和 耐久性。

该柴油机 采用电子控制 燃油喷射系统。 取消了调速器、 调控传动装置 及机械控制

机构。

为了适应动力车总体要求,将柴 油机进行了降高度设计,同时进行了 减重,使该柴油机结构更为紧凑。柴 油机性能参数见表2。

2.2 车体

车体为框架式侧壁承载车体,全 焊钢结构,可承受1470kN纵向静压 缩力。司机室采用能复合再生的环保 材料PC合金板代替原玻璃钢材料进 行内部装饰。

为了提高动力车外观质量,车体 侧墙组焊采用蒙皮胀拉工艺。

表2 柴油机性能参数

项目	参数
UIC 标定功率 / kW	2 400
最大运用功率/ kW	2 000
转速 / r·min ⁻¹	400 ~ 1 000
气缸数及排列型式	12缸, V型, 50°夹角
燃烧方式	直接喷射, 开式燃烧室
缸径×行程/mm	240 × 275
压缩比	12.4
标定功率时燃油消耗率	不大干214
/ g·(kW·h) ⁻¹	个人于214
标定功率时机油消耗率/%	不大于(燃油消耗率的)1.5

(C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

车体后端设置密封性好的折棚风 挡,作为动力车与客车之间的诵道。

司机室前窗玻璃采用电热安全玻 璃,整体粘接到车体窗框上。

动力车后端车钩采用带旋转功能 的密接式车钩; 前端车钩为自动车 钩。

2.3 走行部分

动力车走行部分采用2个结构相 同的 A1A 轴式的准高速径向转向架, 两转向架中心距 10 400 mm。转向架 构架采用高强度低合金材料,由2个 侧架 ,1个横梁和2个端梁组成闭式结 构。2个牵引电动机相对布置,采用轮 对空心轴全悬挂安装方式,降低了簧 下重量。设有径向转动机构,靠轮轨 间蠕滑自导向,促使端轴在曲线区段 呈八字形径向取位,减小轮轨冲角和 横向力,可有效地提高曲线通过能力。 牵引力通过低位牵引杆传递;轴箱为 拉杆定位式轴箱。弹簧悬挂装置为两 系弹簧悬挂,一系为轴箱螺旋弹簧加 垂向液压减振器,二系采用大挠度高 圆簧上下加减振垫及垂向、横向、抗蛇 行减振器。车轮采用整体车轮。基础制 动装置采用带有闸瓦间隙自动调整功 能的单元制动器,每节动力车一、六轴 设弹簧停车装置。

为了满足动力车快速运行时的制 动停车距离需要,制动闸瓦采用摩擦系 数较大的粉末冶金瓦。该闸瓦具有散

表3 转向架主要性能参数

项目	参数
轴距/mm	1 900
轮径/mm	1 050
基础制动装置	
单元制动装置数	每轮一个
制动倍率	4.47/2.7
动力车制动率	
常用制动	0.44
紧急制动	0.5
弹簧停车制动率	0.11

热性能好,环境适应能力强,摩擦系数 稳定的特点。动力车在 160 km/h 速度 运行时,单机紧急制动停车距离不超过 1600 m。转向架主要性能参数见表3。

2.4 电气部分

2.4.1 电传动装置

主传动采用交 - 直流电传动。主 发电机发出的三相交流电经主整流柜 整流成直流电后,送给4个全并联的牵 引电动机。

牵引发电机为JF210E型主、副三 相交流发电机,兼有列车供电功能, 主发电机与供电发电机同轴一体。牵 引电动机型号为 ZD-106A。主整流 柜的硅元件采用与 DF40 型机车相同的 元件,主整流装置型号GTF-5070/ 1250A。电阻制动可满足柴油机自负 荷试验。

2.4.2 控制系统

动力车采用微机控制,其主要功 能有:动力车运行状态控制:柴油机转 速与功率控制;辅助发电恒压控制;电 阻制动与空气制动控制:动力车系统 运行参数显示;动力车系统故障记录 与报警;列车供电恒压控制等。司机控 制手柄采用 12 档位。

2.4.3 列车供电系统

动力车设置有列车供电系统,以 满足客车用电。首尾动力车均可向列 车提供600 / 直流电源,每单节动力车 最大供电功率为300 kW,采用列车集 中供电,客车分散逆变方式。首尾动力 车分两路向列车供电。微机控制系统 还可以根据列车用电情况实现供电功 率和牵引功率的相互转移。需要说明 的是,由于副发电机散热及控制要求, 副发电机工作的最低转速为 680 r/ min,所以在柴油机惰转情况下,只要 列车进行供电,微机系统便会自动将 柴油机转速升至680 r/min。

2.4.4 列车倾摆控制系统

列车倾摆控制通过安装在机车上 的2个双向陀螺角速率敏感器和3个冗 余的加速度传感器,得到精确可靠的 列车过弯道时的横向剩余离心力加速 度值,由微机完成传感器信号处理,发 出倾摆指令,通过列车网络控制系统 依次向各节客车中的计算机发出倾摆 指令,并由各客车内的倾摆系统完成 倾摆动作的执行。

2.4.5 网络控制系统

摆式动车组网络由WTB列车总 线和 MVB 车辆总线两级总线组成,每 个动力车和客车均设置网络结点,具 有牵引控制、工况显示、动车组倾摆控 制、制动控制、列车状态检测及故障显 示等功能。系统采用模块化硬件,总线 上重要信息可以共享。

2.4.6 控制及照明电路

控制及照明电路采用 110 √ 直流 电源。柴油机起动前由蓄电池供电, 起机后由辅助发电机供电。

2.4.7 其它

装用阀控密封式铅酸蓄电池,避 免了原铅酸蓄电池容易漏液而污染环 境的问题,用来满足柴油机起动和辅 助用电的需要。动力车设有 SJ-94 型 通用式机车信号, LKJ-2000型列车 运行监控装置,无线调度电台,并设 有首尾动力车之间的联系电话。可实 现2节动力车牵引、制动(包括电阻制 动)、撒砂等作用同步操纵。动力车设 有可调光的头灯,司机室内设可调照 明灯,车内各室和底架下方设有足够 的照明设备。

电气部分主要性能参数见表4。

2.5 辅助系统

2.5.1 冷却水系统

动力车冷却水系统采用和 DF4 系 列机车类似的高温水和中冷水2个独 立的循环系统。高温水系统采用高温

(C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

表4 电气部分主要性能参数

项目	参数
主发电机	
额定容量 / kVA	2 200
额定电流 /A	2 640/1 650(AC)
额定电压 /V	481/770(AC)
额定转速 / r·min-1	1 000
额定频率 /Hz	150
最大电流 /A	3 590 (AC)
励磁方式	他励
绝缘等级	н / н
冷却方式	径向自通风
工作制	连续
副发电机	
额定容量/ kVA	350
额定电压 / V	600 (DC)
励磁方式	他励
冷却方式	径向自通风
工作制	连续
主整流装置	
整流电路	三相桥式
冷却方式	强迫风冷
牵引电动机	
额定功率 /k₩	600
额定电压 //	760
额定电流 /A	845
额定转速 / r·min-1	1 150
额定效率 /% 最高电压 /V	94
取同电压 / V 最大电流 /A	980 1 260
最小恒功率电流/A	655
最大恒功率电流/5 最大恒功率转速/r·min ⁻¹	2 260
最大转速 / r·min ⁻¹	2 450
励磁方式	串励
工作制	
通风方式	强迫通风
绝缘等级	H/H
电阻制动装置	
电阻制动轮周功率 /kW	1 700
制动电阻值/	1
最大允许使用温度/	600
最大制动电流/A	680
最大励磁电流/A	740

加压冷却、闭式循环,可有效地提高冷却装置的 散热能力。冷却装置共采用30组散热器。散热器 采用机械胀管式铜散热器。

柴油机冷却水系统采用高低温两路独立的循环 系统。高温水系统采用闭式加压冷却方式,高温水出

口水温最高控制在98。

冷却风扇为直径1.8 m的轴流风扇,由静液压马达驱动。 2.5.2 机油系统

动力车的机油系统与DF4系列机车机油系统原理相同。 启动机油泵电机组、机油滤清器、机油热交换器等部件,均采 用大连机车车辆厂批量生产的产品。

2.5.3 燃油系统

动力车的燃油系统原理与DF4系列机车燃油系统原理相 同,系统压力提高后,燃油输送泵采用进口产品,仍采用110 V(DC) 电机。

2.5.4 通风及空气滤清系统

- (1)柴油机进气滤清系统。滤清器由三级滤清元件组成, 第一级为波纹状滤网 第二级为多旋流管惯性滤清器 第三级 为金属骨架纸质滤清器。
- (2)牵引电动机通风及空气滤清。前转向架的牵引电动 机通风机 从设在电气室侧墙上的通风窗吸入外界空气。外界 空气先经过主整流柜中的热管元件后,再进入牵引电动机通 风道,给前转向架的2个牵引电动机通风冷却。后转向架的牵 引电动机通风机布置在冷却室内冷却装置的下方,从冷却室 两侧百页窗吸入空气,通过车体底架上的风道对牵引电动机 进行冷却。

2.6 空气制动系统

空气制动系统采用微机控制直通式电空制动系统。风源 系统中设有风源净化装置。空气压缩机采用 TSA-230D 型螺 杆式空压机。具有双管供风装置。总风缸容积1000 L,制动 管定压 600 kPa。设防滑器。

3 摆式列车的应用前景

摆式列车的作用是提高列车曲线通过的速度。我国铁路 有相当一部分或受地形限制或由于修建年代较早,技术标准 较低,曲线多且半径小,典型的如成渝、成昆、贵昆、焦济线 以及金温线等。仅以成渝线为例,该线全长504 km,有曲线 761 处,最小曲线半径285 m,曲线半径在600 m以下的曲线 长度占总长的68%。在目前以及今后一段时间内,我国在这些 线路上进行大幅度改造的可能性很小,而这部分铁路对当地 的经济发展又有着举足轻重的作用。在这些线路上,摆式列车 能发挥其优势 根据理论分析结合国外实际应用证明 摆式列 车可以提高曲线通过速度30%以上。

> 责任编辑 冒一平 收稿日期 2003-10-13